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I. Introduction

In Doerschuk (1986) we developed a methodology for modeling

electrocardiograms (ECC's) that could be used as the basis for ECG signal

processing/analysis algorithms. The models we have developed have several

important characteristics:

(1) The models are hierarchical in nature. Specifically, at the
upper level we model the event structure of the heart, capturing
the electrical state of various anatomical portions of the heart.
At the lower level we model the actual observation, the ECC
signal. The model reflects the fact that particular cardiac
events directly result in the various waveforms seen in the ECC
by having particular changes of state in the upper model initiate
waveforms in the lower level model.

(2) The upper level model consists of interacting finite-state
processes, each of which models a specific anatomical portion of
the heart. In this way we attempt to capture the distributed but
coordinated way in which the heart operates. In particular, this
model structure allows us to highlight the aspects of timing and
control that are critical to cardiac behavior. Specifically, in
our models the state transition probabilities of each subprocess
are affected by the states of other subprocesses, allowing us to
model, for example, the attempt of one portion of the heart to
precipitate an event (e.g. a contraction) in another portion of
the heart.

For a detailed description of this modeling methodology see CDoerschuk 1985.

19863. An example is also described in the next section as we develop our

approach to estimation.

The motivation for developing models of this type was to overcome

limitations of existing signal processing models (e.g. those used by Gustafson

1978a, b. 1981: Ciocloda 1983; Gersch 1970. 1975; Tsui 1975: Grove 1978;

Haywood 1977; Richardson 1976) by capturing physiology in a more fundamental

way while, however, stopping far short of the level of detail found in

.. MS
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physiologically accurate models. We have attempted to develop models that

capture all features needed to characterize differences in cardiac rhythms,

i.e. differences in the sequential nature of various cardiac events.

Consequently, the focus of our interest in this paper is on the estimation of

the states of the upper. level of the model. As discussed in [Doerschuk 1986].

previously developed rhythm analysis methods have also been based on

event-level models of cardiac behavior. These models differ from ours in

several important respects. Specifically, in previous methods typically only

the event level description is modeled, and it is assumed that event-level

inputs are available from a wave detection preprocessor. For methods in which

attention is paid only to ventricular events -- i.e. to so-called R-waves --

extremely useful models of this type can be developed since (a) R-waves are

comparatively large and thus can be detected with great reliability: and (b)

one can achieve great efficiencies in describing event-level models by using

as a sequential index the successive R-wave occurrences rather than the real

ECX sample-to-sample time. However. when one begins to include more cardiac

detail, such as the P-waves arising from atrial activity, difficulties arise

with such high-level models. In particular, because of their much lower

energy levels P-waves are much more difficult to detect. Consequently, in

some previous methods one finds ad hoc attempts at feedback from the rhythm

tracker to the wave detection process, taking advantage of the fact that in a

normal heartbeat the P-wave precedes the R-wave in a predictable fashion.

Furthermore, it is very difficult in such a framework to incorporate the

possibility of missed detections or false alarms, which are very real

.
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possibilities. especially for P-waves and especially in aberrant cardiac

rhythms. For our two-level models in which the measurements are the raw data,

wave detection feedback and the possibilities of false positive and missed

detections are built in in a fundamental way. Also, while in a perfectly

normal rhythm P-waves and R-waves are always paired, cardiac arrhythmias are

characterized by asynchronous behavior, in which for example several P-waves

may occur without an Intervening R-wave or vice versa. The emphasis in our

models on timing captures such asynchronous behavior in a natural way rather

than In the less than completely satisfactory manner found in previous

methods.

The various potential advantages we have attributed to using the models

in EDoerschuk 1986] for E(XG rhythm processing do not come, of course. without

a significant price. In particular, while we do contend that truly optimal

estimation based on these models would achieve these advantages, the

computational load associated with optimal processing is prohibitively large.

Thus the major issue is the development of feasible, suboptimal estimation

algorithms. In this paper we investigate the development of such algorithms

that take advantage of two important features of this class of estimation

problems. First, the estimation of event sequences in the upper level model

is essentially a decoding problem (i.e. the ECC is an encoding of the discrete

cardiac events we wish to estimate). Consequently we make repeated use of an

efficient technique for optimal estimation of finite-state processes first

developed for coding applications. namely the Viterbi algorithm [Forney 1973].

Second, since our models are distributed, we can consider the design of

distributed estimators, consisting of interacting algorithms each focused on

the job of estimating the state of a particular subprocess. Such estimation
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p structures offer the attractive possibility of implementation in a distributed

processor. thereby allowing significant improvements in throughput rates.

The design of such estimators also raises a number of important

questions. In particular, since the several subprocesses of our upper level

model interact strongly, It is not possible to estimate the state of a

-'burocess without accounting for the influence on it of other subprocesses.

Consequently it is necessary to include an (hopefully highly) aggregated model

of other subprocesses that captures the dynamics of the interactions these

subprocesses have with the particular subprocess being estimated. Also. it is

necessary for the estimators of Interacting subprocesses to interact

themselves (e.g. estimators of atrial and ventricular activity most certainly

have information worth sharing!). This raises an interesting problem.

Specifically, since each estimator In essence receives additional measurements

In the form of Information passed from other estimators. It Is necessary to

model these measurements -- i.e. each estimator needs an aggregated model of

the dynamics and the uncertainties in the other estimators. In addition.

since each estimator is using the same raw data (the ECC) but is interested in

only some of the events in the data, it may be necessary to provide

information to each estimator concerning estimated times of occurrence of

other events in the ECC data (e.g. an atrial estimator may need estimates of

R-wave locations from the ventricular estimator in order to assist it in

locating the much smaller P-waves). Also, as one might expect, there may very

well be a need for some iteration in this process so that a high level of

performance and consistency among the estimators is achieved.

While electrocardiogram analysis has provided the motivation and examples
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for our work, there are a variety of other applications in which similar

estimation problems arise. In particular, consider the distributed monitoring

of interconnected power systems. Such systems are made up of strongly

interacting components subject to events (such as generator trips and line

faults) that can precipitate events In other parts of the system. An

extremely important problem is the design of distributed monitoring systems,

and a critical aspect of this problem is determining how to structure the

interaction among local monitoring systems in order to produce a consistent

and accurate overall estimate of system status. Similar Issues also arise in

military contexts In distributed battle mnagement and assessment. In all of

these problem the key question is how do we design distributed event

estimation algorithms, and In this paper we address this problem and in

particular the several critical Issues raised In the previous paragraph. We

begin in the next section with a case study, in which we describe the details

of designing an estimator for an example corresponding to a particular cardiac

arrhythmia. This case -study allows us to introduce the major questions that

arise In designing distributed event estimation algorithms. In Section 3 we

then step back from this example and extract from it a general, systematic

design approach. We then discuss a series of simplifications that are

possible for the class of models arising in E(X analysis and that result in

the algorithm described in Section 2.

While the motivation for considering distributed estimators for ECG

rhythm analysis is the issue of computational complexity (as opposed to

geographic separation of sensors and controls as in the case of electric power

or military systems), we have not taken our design methodology to the point of

I4
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developing a complete and computationally feasible ECC analysis system, and

indeed as we discuss in Section 4 a number of issues remain before such a

system is developed. Rather what we have attempted to do is to use the EC

problem as a context in which we can explore the major problems in the design

of distributed event estimation systems, present the elements needed in their

solution and a systematic procedure for their application, and demonstrate the

potential of this approach for solving a class of extremely complex estimation

problems.

2. An Estimation Example

In this section we introduce our approach to estimation algorithm design

by considering a particular example. The process whose state is to be

estimated and which is illustrated in Figure 1 models normal cardiac rhythm

with occasional reentrant-mechanism premature ventricular contractions (PVCs;

these result from a normal excitation of the ventricles in effect circling

back on itself and causing additional ventricular contractions). Let us

briefly indicate several important features of the model:

(1) The model consists of two subprocesses one (the SA-atrial
submodel, denoted CX). with state xO) representing the behavior of

the upper chambers of the heart and the other (the AV-ventricular
submodel. denoted Cl. with state xl) capturing the behavior of

the atrial-ventricular connection and the lower chambers of the
heart. In the figure we have depicted the state transition
probabilities for each submodel and the interaction between
submodels which is captured by the dependence of these
probabilities on the state of the other subprocess. We have also
indicated which transitions in each subprocess give rise to
waveforms or sixnatures that appear in the observed EOG. The
signatures modeled are the P-wave (labeled P0 ' P1. P2' P3 in the

A!
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figure). the R-wave, the T-wave (corresponding to ventricular
repolarization following a normal contraction), and a V-wave
corresponding to an aberrant reentrant PVC. The actual signature
that appears in the ECG consists of a mean value plus additive
white noise of specified variance. Each occurrence of these
signatures includes a different realization of the noise. The
means and variances for the various signatures are also
illustrated in Figure 1.

(2) The interactions between the submodels are infrequent but are
extremely strong. In particular, the diagram shown for the
SA-atrial submodel represents normal activity which occurs unless
x = 13 in the AV-ventricular submodel, corresponding to the

initiation of a PVC. When such an event occurs, it is possible
for the electrical signal to propagate back to the upper chambers
of the heart and in essence reset the timing of the heart's own
pacemaker. This is captured by modifying the transition
probabilities of x0 so that with probability 1/2 x0 is reset to

state 25 when xl= 13, and with probability 1/2 x0 proceeds in a

normal fashion. In the x1 submodel the only transition

probability affected by the value of x0 is 1 In particular,

x= 0 represents the resting state of the ventricles, which is a

trapping state (P01 = 0) until the ventricles are excited by an
atrial contraction. This event is modeled by x0 = 0 which both

initiates the P-wave and excites the AV-ventricular submodel by

causing pO1 to change to a value of 1 for one time step.

(3) In our model, the ECC measurements are available at a rate four
times the clock rate of the x0 , x, processes. In order to make

it possible for signatures to start at any observation sample,
each signature appears four times with 0, 1, 2, or 3 leading
zeros in the mean and covariance sequences. (The subscripts on
the wave-types indicate the number of leading zeros). This
explains states 22-24 in submodel CO and states 22-30 in submodel
Cl.

(4) The initiation of reentrant PVC's is modeled by transitions out
of states 12 and 21 In submodel Cl. Occupancy of state 12
corresponds to the completion of a normal R, T-wave pair, and
from this state there is a probability of 0.9 of returning to the
resting state and a probability of 0.1 of entering state 13
corresponding to the initiation of a reentrant PVC. Note that
there is a much higher probability (0.4) of initiating
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subsequent, consecutive reentrant PVC's (the 21-to-13 transition)
which results in occasional occurrences of bursts of aberrant
PVC's as are seen in episodes of ventricular tachycardia.

(5) The remaining states and transition probabilities model cardiac
timing -- propagation delays, recovery time following
contraction, etc. The model does allow for some uncertainty in
this timing behavior and therefore some variability in the heart
rate (which with a I4arkov chain cycle time of 0.04 seconds is, on
the average, 75 beats per minute) as can be seen in the
transitions with probabilities less than 1. It is certainly
possible to add even more variability, but for simplicity we have
not done that here.

Figure 2 shows a plot of several typical segments of a simulated ECG

obtained using this model. Below the EOG tracing are several sets of

annotations. The top row of annotations indicates the true times and types of

waves that are present in the data (corresponding to the times at which

transitions are made out of state 0 in submodel CO (P-wave) and states 4

(R-wave), 7 (T-wave). and 13 (V-wave) of submodel Cl). The remaining rows

represent various annotations constructed during the estimation process, with

the bottom row representing our final set of estimates. Before turning to a

discussion of our estimation procedure, let us briefly comment on the nature

of the simulated ECC itself. In particular, the simulated data resembles an

ECU, but it is not entirely realistic. The chief difference is the character

of the noise. First, no bandlimited noise, "shot noise" like events, or

baseline instabilities are present. Second, the noise that is present, though

it resembles electromyogram artifact when considered locally, appears to have

a time-varying intensity (higher during the P-, R-, T-, and V-waves) which is

not realistic for true electromyogram artifact. (As discussed in [Doerschuk

1986]. the reason for the time-varying intensity was to give a crude model of

the morphology variability of the different wave types). Each of these issues
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can be dealt with by adding additional detail to our model. Again for

simplicity we have not done so here. Also. much of this detail may very well

not be necessary for the purpose of designing rhythm processing algorithms.

Finally. in anticipation of the discussion to follow, we introduce some

notation. Specifically, it is useful to have a compact pictorial description

of interacting Narkov chains. Such a description is illustrated in Figure 3.

Here the label CO denotes the SA-atrial submodel and C1 the AV-ventriclar

submodel shown in Figure 1. The arrows between CO and C1 indicate that the

state of each subprocess influences the transition behavior of the other.

Also, the arrows labeled P, R, T, and V indicate the waveforms initiated by

each subprocess. In addition, we use the variables hol(n) to denote the

sequence of interactions initiated by CO and impinging on Cl. That is hol(n)

completely captures the influence CO has on the transition probabilities of C1

for the transition x(n) -* xl(n+l). Referring to Figure 1, we see that we can

define hol(n) so that it takes on only two values

if xO(n) = 0
)l otherwise

The only transition probability of C1 that is influenced by CO is a trivial

function of hol(n):

Po 1 h01 (n) = 0 (2)

hol(n) = 1

Similarly we can define the interactions hlo(n) from Cl impinging on CO

h {0 if x1(n) 0 13

h0(n) otherwise
so that if h10 (n) = 0 the transition probabilities are as indicated in the

figure, and If hlo(n) = I they are the average of these values and a



FLiure 3: High-level block diaqraim representation of the model of
Figure 1.
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probability 1 reset to state 25 from any other state. Note that there are far

fewer values for these interaction variables than for the corresponding

states. This fact is used in an essential way in constructing several

aggregate models used in our estimation methodology.

As discussed in the Introduction, our approach to state estimation for

such a process involves the design of a set of interacting estimators, each of

which focuses on estimation for a particular subprocess. Also, as we

indicated, the existence of the interactions among subprocesses may require

some iteration. For the present example our estimator can be viewed as

consisting of three passes:

(1) Derive a preliminary estimate of ventricular activity (submodel
Cl).

(2) Based on the observed E(G and the estimates from pass 1, compute
an estimate of atrial activity (submodel CO).

(3) Refine the ventricular estimate based on the observed ECG and the
estimates of atrial activity from pass 2.

The results from (2) and (3) form the final estimate. Note that this approach

roughly parallels the heuristic approach humans take in first identifying the

high signal-to-noise ratio (SNR) events (R- and V-waves). then using these

estimates to assist in locating the low SNR events (P-waves). and finally

making adjustments to ensure accuracy and consistency. Also, while we

describe these three steps as separate passes through the data, it is

straightforward to construct a pipelined structure in which the three steps

proceed at the same time.

We now turn to a detailed examination of each of these three passes.
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Because the first pass focuses on submodel Cl. it is natural to include an

exact copy of this submodel in the estimator's model. However, it is also

necessary to model the interactions impinging on the Cl submodel. i.e. hol(n).

Here one is confronted with a range of possibilities, from the exact model of

CO depicted in Figure 1 (which provides complete accuracy in modeling

interactions at the expense of computational complexity) to no model (which q.

completely misses capturing interactions but leads to the simplest estimator).

We have chosen in this study to use the simplest possible aggregate model for

submodel CO with which we can still capture the full range of interactions

with submodel Cl. In particular the aggregate version of submodel C that we

use in this step is a two-state model, corresponding to the two possible

values of h0 1(n). In addition, we allow submodel Cl to reset the state of our

two-state aggregate model, again reflecting behavior seen in the full model.

In the full discussion of our approach to estimation, this type of aggregate

model is referred to as an "SO-submodel". Details for this example are given

in Figure 4.

There are several further points to make about this first pass. Note

first of all that the subprocess SO does not initiate P-waves. While it would

certainly be possible to include the P-wave. this wave has a relatively small "e

amplitude compared to the ventricular waves of primary concern in this pass.

Consequently, there is little chance of confusing an unmodeled P-wave for an

R- or V-wave, and for this reason we chose to ignore its presence in this

pass. A second question that arises is the choice of the value of p in

submodel SO. One can imagine several methods for choosing p -- matching some

statistic of the exact submodel CO or viewing p as a design parameter to be

N N
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chosen to optimize estimator performance. In EDoerschuk 1985) several general

statistical methods (which can be easily automated) are described for choosing

parameters to match particularly useful statistics. In Section 3 we describe

the statistical method used to obtain the value for p indicated in the figure.

Finally. with this parameter specified we have a complete model, and the first

step estimator is designed to produced a minimum probability-of-error state

trajectory estimate for this model (i.e. estimates of the states of SO and Cl

as functions of time) based on the observed ECU. The method used to compute

this sequence of estimates is the Viterbi algorithm [Forney 1973] which

efficiently and recursively eliminates candidate trajectories that are

suboptimal. Note that the estimate so-produced is an optimal smoothed

trajectory, i.e. the best state estimate at each time is based on information

before and after that time. The Viterbi algorithm minimizes the extent of the

noncausality required in computing this optimal estimate.

The results of this first pass estimator are illustrated in the second

row of annotations in Figure 2. where we have indicated the estimated times of

occurrence of R-. T-. and V-waves. For the most part these estimates are

quite accurate, thanks to the high SNR of these waves, although there are

infrequent false alarms in the estimates caused by extra-long P-P intervals in

which case the estimator attempted to match a T-wave with an actual P-wave.

The second step in our overall estimation structure is to estimate the

state trajectory in the SA-atrial submodel. Therefore. it is natural to

include an exact copy of the SA-atrial submodel in the estimator's model. For

estimating this trajectory the only direct information from the ECC is the low

SNR P-wave. However. there is also a great deal of indirect information

*.., .'..•... &,".". e_ .e -' 
/ ' . , # _-. , . '## , -~e ,' .ej.' -

. e , .. "."...•.', ". ,",',",',", ",*.', . "' ",**
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available through the causal relationship between P- and R- waves and V-and

P-waves.

First consider interactions initiated by submodel CO. That is, consider

the causality between P- and R-waves the latter of which only occur when the

SA-atrial submodel successfully excites the AV-ventricular submodel. The

question in this case is how we can exploit the auxiliary information

concerning R-wave occurrences determined in the first estimation pass. At the

very least one could imagine using the state estimates for SO which are

estimates of interactions impinging on the AV-ventricular submodel. Since the

O-state in this submodel corresponds to the O-state in the original submodel

CO (and thus to attempts to excite submodel Cl). the estimates of times at

which SO is in state 0 would be likely estimates of times at which hol(n) = 0.

However, because of the highly aggregated nature of SO, some of these

estimates may be somewhat suspect. However. when such an estimate is coupled

together with a closely following estimated occurrence of an R-wave

(corresponding to :he estimate of the Cl subprocess occupying state 4). the SO

estimate is much more likely to correspond to a true occurrence of an attempt

at ventricular excitation. Consequently the information we provide to pass 2

from pass 1. which we will refer to as estimated augmented interactions.

consists of the sequence of estimates of the states of SO and Cl produced in

pass 1.

We now describe the issues involved in using these estimated augmented

interactions. First of all, these estimates contain errors, so some

uncertainty in them must be modeled. Note. however, that the errors of

importance here are not only memoryless errors (which could be modeled by
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static misclassification probabilities) but also errors in timing (e.g. the

estimated time of occurrence of an R-wave may be in error by one or two

samples). Consequently, we need a dynamic model for the way in which

estimated augmented interactions provide information about CO. The way in

which this is accomplished, as illustrated in Figure 5, is by modeling the

estimated interactions, denoted by z1. as the observed outputs of an

additional submodel of a class we refer to as S1 submodels. This additional

submodel receives interactions from submodel CO. whose state we wish to

estimate. In order to model the fact that the estimates in z(n) may contain

time shifts relative to the actual values of the interactions h0 l(n), we take

as the state of the S1 submodel a vector of the most recent interaction

values. To minimize the size of the Sl state space one clearly wishes to

minimize the dimension of this vector. For this study we found a dimension of

2 to be adequate, so that the state of Sl at time n is (hol(n-l), h0 1 (n-2)).

By examining the CO submodel, we see that it is impossible for h01 to equal 0

at consecutive times. Thus, there are only three possible Sl states which we

have coded as follows in Figure 5:

0 = (0. . 1 = (1. 0) . 2 = (1. 1)

Since h is a deterministic function of the state of CO it is straightforward 'p

01
to derive the way in which xo(n) affects the transition behavior of Sl (see

Figure 5).

As in all of our models, the observation zl(n) is associated with

transitions in the Sl subprocess which correspond to 3-tuples (h0 1(n-1),

h0 1(n-2), h0 1 (n-3)) of interactions (corresponding to the states of the S1

subprocess before and after the transition). Our measurement model is then

N N.



(a)

S I Model if xo(n) 0

SI Model if xo(n) sO

(b)

S2 Model (p=0.00784)
p

(C)

Figure 5: model for the second pass (the sublmodel CO is reset, i.e, its
transition rates are as qiven in Figure 1 with x, 13, only

if the S2 process is in state 2.)
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the set of conditional probabilities

Pr(zl(n) lh0l(n-1) ,h0 1(n-2) ,hol(n-3)) (4)

Since the Viterbi algorithm provides us with noncausal estimates, we are free

to build some noncausality into this model. Consequently, we have chosen to

take z1(n) as the pass 1 estimate at time n--2, which therefore provides an

estimate of h 01(n-2). Thus the model allows us to capture time shifts of +1.1

The specification of (4) can be obtained by analysis of the performance of the

first step estimator. We have estimated these quantities by simulating that

estimator and tabulating the results.

We now must consider the interactions hlo(n) initiated by Cl and

impinging on CO, i.e. the effect of V-wave occurrences on CO. There is a

similarity here with the modeling of SO in the first pass but in the present

context we also have the estimates from pass 1 which-tell us something about

these interactions. Specifically. since we used the exact C1 submodel in pass

1, we can deduce estimates of hlo (see (3)). We take th"s estimates as our

observation z2 for pass 2 (without any augmentation as was dnne for z since

the first step estimator used an exact model for Cl and consequently should

produce comparatively accurate estimates). Also. as with the Si submodel, we

need to model possible estimation timing errors, so again we take the state of

S2 to be a set of the most recent interactions, in this case (hlo(n).

h0(n-l)).2 In this example it is impossible for h10 to equal 1 at two

INote that allowing timing errors of both signs is needed in any realistic
algorithm since, for example, wave detection preprocessors are noncausal in
nature.

2Note that there is some asymmetry in comparison with the S1 submodel where
the state was lagged one step. This is a result of the fact that in the Si

4. %
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consecutive times, and thus we can code the feasible S2 states as

0 = (0, 0) 1 1 = (0, 1) , 2 = (1, 0)

In this example the CO submodel transition probabilities are as illustrated

pictorially in Figure 1 for XS2 (n) = 0 or I and incorporate the 0.5

probability reset to state 25 when Xs2 (n) = 2. The model for S2 is also

illustrated in Figure 5. Note that as with Si, there is a parameter p to be

chosen to specify the S2 transition probabilities. This parameter was also

chosen to match statistics of the true h10 process (as were the other

probabilities of the S2 process, but these can be determined trivially from

the structure of the Cl submodel). The general method used is described in

the next section. Finally, the observation z2 (n), which is the pass 1

estimate of hlo(n-l), is modeled as resulting from S2-transitions. Thus again

we must specify a distribution, namely

Pr(z2 (n) jhlo(n), hlo(n-1), hiD(n-2))

which we have again done by simulation.

This completes the specification of the second pass model. It is worth

noting, however, that there are several things that have been left out of the

model. The most glaring of these, perhaps, is the complete absence of R-, T-,

and V-waves. For the pass 1 estimation algorithm we argued that it was

reasonable to consider omitting P-waves from the model since (a) we were

focusing most attention on submodel Cl and (b) the P-waves were of low

amplitude. In pass 2, the first argument holds (here we are focusing on O),

submodel, ho1 (n) is a deterministic function of xO(n). Thus for the state

XO(n) to correctly "influence" the next transition in Si, we needed to

introduce the time delay in defining the S1 state. This is not needed in S2,
since there is no such deterministic coupling.

L& 1
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but the latter does not, since R-, T-, and V-waves are not of low amplitude.

In the general procedure described in the next section, we allow for the

possibility of taking such waves into account through so-called subtractor

submodels. However, as the results in this section and in [Doerschuk 1985]

indicate, for EOG-type models such as the one considered here the use of such

models is of doubtful value. Intuitively the reason we can ignore such waves

in the pass 2 estimation algorithm is that through zl(n) and z2 (n) we are

providing indications of the times at which these waves occur. Given then the

coupling between these waves and the likely times of P-waves, captured in the

original CO-Cl model and in our simplified pass 2 0-S-S2 model, the pass 2

estimator will not try to account for R-, T-, and V-waves by placing P-waves

in their locations.

A second issue we have ignored is that of allowing the CO submodel to

influence the S2 submodel (which is. in our approach, autonomous). Since the

CO submodel does influence the Cl submodel, there would seem to be some

argument for doing so. However, it is precisely this influence that is

focused upon in the $1 submodel, while the S2 submodel focuses on that part of

the C1 submodel, dealing with V-waves. which is unaffected by the CO submodel.

, Consequently, while our general modeling methodology allows CO to influence

S2. it is not necessary to include this bit of complexity in the present

' context.

Finally, we note that in our model we are considering zI and z2 to be

independent measurements, which is clearly erroneous since they are both

determined by the pass I estimation process. One can certainly construct a

somewhat more complex model involving a joint distribution of z1 . z2 given the

!7
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combined information in the most recent transitions of Si and S2, but this was

not found to be necessary here (since again z1 and z2 focus on different

portions of the overall CD-Cl model).

In summary, the second pass of our estimation procedure consists of the

minimum probability-of-error estimation of the state trajectory of the model

given in Figure 5 (using the Viterbi algorithm) given the ECC measurement and

the derived measurements z and z from the first pass. The results for this

example are given in the third row of annotations in Figure 2 where we have

indicated the times at which P-waves were estimated to have occurred.

Comparing this to the top row of annotations we see that performance is quite

good. Note that the erroneous R.T-wave pairs from pass 1 near 136.6 and 138.3

seconds did not lead to an erroneous P-waves in pass 2, thanks to our modeling

of z which incorporated the possibility of such false alarms. Note also the

occurrence of P-wave timing errors (as illustrated near 80.2 and 99.9 seconds)

all of which underestimate the P-R interval. Finally, note that it is

possible in our model (and in the heart) for P- and V-waves to occur nearly

simultaneously or for V-waves to preempt an already occurring P-wave from

initiating a normal R-wave. Having knowledge of this, the pass 2 estimator

will attempt to insert P-waves when the timing seems likely even though the

presence of V-waves may obscure the P-wave (indeed this is precisely how a

human would create such estimates). An example of correct estimates of this

type can be found near 99 seconds. A false alarm can be seen near 82.6

seconds, and a missed detection near 83.3 seconds. While the value of such

estimates is suspect (and not of particular consequence) they do provide

rather graphic examples of the use our estimator makes of the timing and
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control information embedded in our models.

The third pass of the estimation process, whose purpose is to provide

improved and consistent estimates of ventricular activity, is based on a

model, illustrated in Figure 6, with structure analogous to that of pass 2

(with the roles of submodels CO and Cl interchanged). Specifically, since the

focus of pass 3 is on submodel C1, we include a complete version of this

submodel. Also, from pass 2 we obtain estimates of interactions h10 initiated

by Cl and impinging on CO (these come from the estimates of the state of the

S2 submodel in pass 2) and estimates of interactions h0 1 initiated by CO and

impinging on C1 (these come directly from the pass 2 estimate of the state of

CO). As before, since only an aggregate model (S2) is used in pass 2 to

estimate h10 , we augment these estimates with the corresponding estimate of

the state of CO. These augmented estimates are incorporated in pass 3 as

observations, denoted by zI in Figure 6, of an $1 submodel whose state is the

most recent two values of the actual interactions. (hlo(n-1). h10 (n-2)). The

pass 2 estimates of h0 1 are incorporated in pass 3 as the observations, z2. of

an S2 submodel whose state is (hol(n). ho1(n-1)). The same methods as in pass

2 were used to compute the transition probabilities and measurement

distributions. The estimator is again a minimum probability-of-error

estimator using the ECG and the derived measurements z1, z2.*

The result of applying this estimator is illustrated in the fourth row of

annotations in Figure 2. The final, overall estimate consists of the CO-state

estimate of pass 2 (row 3) and the Cl-state estimate of pass 3 (row 4). which

are combined in row 5. Comparing the top and bottom rows we see that the

estimator has performed quite well. Disregarding the initial heartbeat (which

S=-

9.
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Figure 6: Block diagram of the model for the third pass.
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was missed in pass 3 because of the specific way in which we implemented the

initialization of the latter passes of our algorithm) all R-, T-, and V-waves

were detected and located with no false alarms. Note that while there had

been several false R, T-wave estimates in pass 1, these have been completely

eliminated in pass 3. in which we have the benefit of using estimates of

CO-behavior in order to enforce consistent overall estimation.

The estimation of P-wave occurrences is also quite good. Quantifying

this performance, however, is an interesting question itself, since one is

clearly not just interested in estimation errors at points in time but also in

timing errors at points in the estimated event cycle -- i.e. an estimation

error of one time sample in locating a P-wave should not be thought of as a

missed detection but rather as a (not particularly troubling) timing error.

Much more on the issue of performance measures for event-oriented estimation

problems can be found in [Doerschuk 1985]. This example does, however,

indicate the main ideas. In examining the results of the full simulation we

find that there are only two isolated false positive P-wave indications and

one isolated false negative (neglecting the initial heartbeat), where by

"isolated" we mean that there is no nearby P-wave in the true or estimated

state trajectories. Given that there are 230 heartbeats in this simulation,

these correspond to a false positive rate of .009 and a false negative rate of

.004. There are also 23 other paired false positives and negatives, where we

have used the criterion of associating estimated and actual P-wave locations

only if the waveforms at these locations overlap. This corresponds to a

paired error rate of 0.10. Note that in our model, every R-wave must be

preceded by a P-wave, and thus this pairing is to be expected (we discuss
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a less deterministically-coupled model in EDoerschuk 1985]). It is worth

noting that in each of these paired errors, the estimated P-wave location was

closer to the R-wave than the true R-wave. indicating a bias that may be

removable (and is most likely due to the pass 2 estimator correlating the

P-wave with the initial portion of the R-wave).

In [Doerschuk 1985] we consider a variety of other models with other

types of variability than that captured in the model of Figure 1. For

example, we have examined models with transient AV block, i.e. models in which

not every attempt at ventricular excitation leads to an R-wave even if the

ventricles are apparently in the resting state. Because of the additional

freedom in the model, one would expect some drop in performance. However the

drop is extremely small both for a globally optimal estimator and for the

suboptimal estimator designed based on the principles outlined in this section

and formalized in the next.

3. A General Design Methodology

The example described in detail in the previous section illustrates the

major elements of a general estimator design methodology for distributed

Markov chains. In this section we describe that methodology. Specifically,

consider the estimation of an interconnection of subprocesses, which we denote

Co . c C ..... r, with states .... given measurements of signals

containing signatures corresponding to particular state transitions in these

subprocesses. The interactions among these subprocesses are defined as

follows. Let hij(n) denote the interaction initiated by Ci and impinging on

C at time n. This interaction is a deterministic function of xi(n), and the

"a,,
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transition probabilities of C are deterministic functions of (h ij(n ) ipj).

The assumption is that the set of possible transition probabilities for each

C (and thus the set of possible values of (hij(n)lifj}) is quite small.

Our overall estimator consists of an interconnection of local estimators

(LE's), each of which focuses on the estimation of one of the subprocesses.

Because of the existence of interactions with and events in the observed data

due to other subprocesses, each LE not only must take these effects into

account in its model but also must communicate with the other LE's in order to

determine a consistent and accurate set of estimates. Consider first the

initial pass through the data, at which time the LE's have no previous

information to communicate. Let us focus on the LE for a specific submodel,

namely C In order for this LE to construct its initial estimate it in

general it will need:

(a) A complete model of the subprocess C on which it is focused.

(b) A model of the interactions impinging on C .

(c) A model of the waveforms generated by the other submodels.

The model referred to in (b) is called an SO submodel, and a major

objective is to make it as simple as possible in order to keep the LE as

simple as possible.3  In the example in the previous section and throughout

3There are two distinct ways in which one can perform this modeling step and
several that follow. In particular, in this section we describe the
construction of a single SO submodel capturing the interactions impinging on
C from all other subporcesses. In [Doerschuk 1985] an analogous approach is

described for constructing separate SO submodels for the interactions
initiated by each of the other subprocesses.

V '4%
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our work we have taken the states of the SO submodel to be in one-to-one

correspondence with the possible values of the N-tuple {hij(n)li=J). Whether

this or a more complex model is used to describe the dynamics of these

interactions, the question remains of choosing the transition probabilities

for the SO submodel. Our approach has for the most part been to match these

one-step transition probabilities to the actual steady-state versions within

the original process, that is, to

lim Pr[{hij(n)Ii~ j}I(hij (n-l)l i j}. {hji(n-l) = hjili#j ) (5)
n-0

This computation deserves some comment. Note first that we have included

conditioning on {hji(n-1) ji#j}. which reflects the influence Cj has on the

other subprocesses. This results in the transition probabilities of SO being

influenced by the state of C . Again we typically expect this influence to

manifest itself as a small number of possible values for a small subset of the

transition probabilles (e.g. in our case study only the parameter p in

Figure 4 is influenced, and it only takes on two values). Note that

conditioned on {hji(n).Ii*J). {xi(n)ii#J} is a Markov chain. However this is

not typically the case for the highly aggregated (hij(n)lijp}, so that the

limit in (5) is not a completely trivial computation. On the other hand, once

we compute the ergodic probabilities for {xi(n)Iiji), it is straightforward to

compute (5).

Typically for models with infrequent changes in interactions, most of the

transition probabilities specified in (5) are 0 or 1. and there are only a few

parameters (such as p in Figure 4) for which this computation is necessary.4

4 Indeed for all of the cases considered in EDoerschuk 1985]. the model was
4 exactly as in Figure 4 (with different values of p), since in all of our cases

-'i
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Finally. we note that there are some cases in which the matching of the

steady-state statistic (5) may be inappropriate. In particular, in using (5)

we are in essence assuming that the transition probabilities of {xi(n)jIIjj} do

not change very frequently (so that steady-state is actually achieved) -- i.e.

that the time variations observed in the actual xj(n) process do not lead to

frequent changes in the interactions hji(n) (which are assumed to be

constant in (5)). We refer the reader to [Doerschuk 1985] for examples

violating this assumption and in which we must set the SO transition

probabilities in a different manner. Note that this assumption is in fact

violated in our case study. In particular, while it is certainly true that

h = 0 for long periods of time, since this corresponds to x1 being any state

other than 13. h10 - 1, corresponding to x - 13, cannot possibly occur at any

two consecutive times. In this case, since h10 = 1 corresponds to a reset of

CD to state 25, and since all states In C0 other than 0 correspond to h0 1 = 1,

it is reasonable to reset the state of SO to 1 whenever x1 = 13. This is what

is specified in Figure 1 and what we would calculate from (5). Thus (5) is

often useful even if the assumption on which it is based is violated.

Let us now discuss the model referred to in (c). This is one of the

subtractor submodels, denoted by S3, referred to in the previous section.

which is incorporated in order to keep the LE from interpreting waveforms

generated by other submodels as coming from C . In essence what we would like

to do is to present the LE with observations containing only those signatures

generated by C Since this is not possible, we equip the LE with a mechanism

there have been only two interaction values, one of which could not occur at
consecutive times.

." .' .% -. -. ",. %_ ."..' .% .' . '. % ..", ' ..". . % -. % .., .-. . ...,,% % .' "." '.,. ." -*%-.° ", I.



26

for estimating when other signatures have occured so that it can in effect

subtract out their effects. In general. one can construct a separate S3

submodel for each signature not initiated by C While it would certainly be

possible to couple these subprocesses with the C and SO submodels, we have

obtained good results with a simpler structure in which each S3 submodel is a

completely autonomous, aggregated process that produces interarrival

statistics for the wave of interest identical to those produced by the exact

model. More precisely, we have always taken S3 submodel to be of the form

shown in Figure 7. The two parameters are chosen as follows. Let Ts(n)

denote the time between the nth and (n+l)st occurrence of the signature S in

the original process. Then we choose p and q to match the probability that

signatures occur at successive times and the mean time between successive

signatures. That is

p = I- lim Pr[TSS(n) = 1] (6)

and

-+1 = lim E[Tss(n)] (7)
q

Again the statistics in (6).(7) can be calculated from the ergodic

probabilities of the full model. In most cases Pr[Tss(n) = 1] = 0. so that

q .21im -1(8)nlim E[Tss(n)] -I( 
)

Therefore, in our general design methodology we construct each initial LE

model using CJ. SO. and S3 components as illustrated in Figure 8 and compute

the initial pass minimum probability-of-error estimates for each LE. We are

then in a position to consider a refinement pass, in which each LE reprocesses

the data, together with information provided from the initial passes of the

LE's.



q

Fioure 7: An S3 chain. Here the 0 - 0 and 0 - 1 transitions

initiate the signature denoted by S.



waveforms initiated by Cj

S3 waveforms
initiated by
other submodels

Figure 8: The structure of a general LE model foran initial pass.
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The LE for subprocess C will in general need the following elements in

its model for a refinement pass:

(1) A complete model of CJ.

(2) A model of the information provided by the previous pass
concerning interactions initiated by C .

(3) A model of the information provided by the previous pass
concerning interactions impining on C J.

(4) A model of the information provided by the previous pass
concerning times of occurrence of waveforms generated by the
other subprocesses.

Note that (2) and (3) together corresponds to (b) in the initial pass. We

have chosen to split these two models here as (i) it makes the modeling of the

information simpler and (ii) the information referred to in (2) and (3) may

typically come from different sources or be of very different accuracy or

structure (given that each LE has an accurate model of its own subprocess but

only highly aggregated models of the others).

As discussed in the previous section, the models referred to in (2) and

(3). which we refer to as Sl and S2 submodels, respectively, must capture the

timing and estimation uncertainties from the previous pass. Each accomplishes

this by taking as its state space a moving window of the most recent

interactions. In particular, the state of the Sl submodel consists of a

window of the most recent values of the N-tuple

(hii Iij}

while the state of the S2 submodel is a window of the most recent values of

5-

I.
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the N-tuple 
5

(hij Iisi}

An objective in designing these models is to* keep the window lengths K1 and K2

small in order to minimize state space size. This desire is balanced by the

need to model estimation timing errors (since the maximum such symmetric error

that can be modeled corresponds to 1/2 the window length). In our work we

have always taken this window length equal to 2.

Consider next the dynamics of the Si and S2 submodels, both of which are

specified in a straightforward manner. In particular, since each hji(n) is a

deterministic function of xj(n) and since the full C model is used by the LE,

the S1 dynamics are essentially a shift register memory. That is, given xj(n),

the transition

xsl(n) = {hji(m)li#i. m=n-K2.. n-l}

xsl(n+l) = {hji(m)liJ. m=n-K2+l...,n}

is deterministic (i.e. for each present state there is one next state [whose

identity depends on xj(n)] that Si will occupy with probability 1).

The dynamics of the S2 submodel are not quite this trivial.

Specifically, as in the SO submodel, we choose the transition probabilities to

match those in the original process. In particular, in analogy with (5), we

can choose these to equal

lim Pr[(h ij (m)li~j , m=n-K 2+2 ..... n+1}(h ij (m) Ji~j,m=n-K 2 +l....n}.(hji(n) Ji~j}]

n-oco

(9)

Recall from the previous section that there is some asymmetry in the windows
here, with the window for SI stopping at time n-i, and the window for S2
stopping at time n.
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By including the conditioning on {hji(n)IiVj} we can capture the interactions

initiated by C and impinging on the other subprocesses (and therefore, in the

LE model, on S2). However, as discussed in the previous section, the effects

of these interactions are the primary concern of the S1 submodel, and thus it

is worth seeking and typically possible to find a far simpler model. In fact

throughout our work we have been able to completely eliminate the influence of

C on S2 (which then operates autonomously, generating the interactions that

impinge on Ci). This can be done by using (9) with {hji(n)li~j} set equal to

the values that represent the most usual interaction.6 Another approach is to

compute the average of (9) over the possible values of {hji(n)Iisj) using

their ergodic probabilities. In our work we have used the latter of these two

methods.

Consider next the modeling of the "measurements" provided by the previous

data pass. With respect to S1. we have in general the following sources of

information concerning the interactions initiated by C

(i) The previous state estimate of C from its associated LE. From

this we can directly compute an estimate of {hji(n)Ii#j}.

(ii) The augmented interactions from each of the other LE's. These
consist of the estimate of the interaction impinging on the C.

submodel associated with each LE (obtained from the aggregated SO
submodel used by the LE) and the corresponding Ci-state estimate

(see the previous section for a discussion of why this augmenting
information is included).

6
In our EOG examples this corresponds to no attempt at interprocess

excitation, as such electrical excitations occur over relatively short time
periods (usually a single time sample).

S-
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Together this information forms a measurement, which we denote zl(n). and,

since we associate measurements with transitions, we model the information

contained in zl(n) by

Pr[zl(n) l{hi(m)i;i. m=n-K2-1....n-1})] (10)

As discussed in the previous section, since we have introduced some

noncausality with the Viterbi algorithm, we have the flexibility of doing so

here (and the need in order to model positive and negative timing errors).

Consequently, we take zl(n) to be the previous pass estimates indicated in (i)

and (ii) evaluated at time n-l-K 2/2. Finally, while it is possible to devise

analytical methods to obtain approximations for (10). we have found it easier

to evaluate these distributions by simulation.

For S2, we have the following sources of information concerning

interactions impinging on C :

(i) The augmented estimated interaction provided by the previous pass
of the LE for CJ.

(ii) The estimated state of each Ci provided by the associated LE.

From these we can directly compute estimates of each hi (n).

This information forms the measurement z2 (n). which is modeled via

Pr[z 2 (n)l{h ij(n) i#j, i=n-K2 ....n] ()

As in the case of S1, we introduce some noncausality by taking z2 (n) to be the

previous pass information evaluated at n - K2/2. and we determine (11) by

simulation.

Finally, consider modeling the information available from the previous

pass concerning waveforms generated by other submodels. Each such waveform is
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modeled by what we call an S4 submodel, which is a second class of subtractor

models used in refinement passes. S4 submodels resemble S2 submodels in

structure and principle. Consider an S4 submodel corresponding to a

particular waveform generated by submodel C The measurement z4 (n) provided

by the previous pass LE for Ci is a sequence of binary annotations -- 0 if the

LE estimates that the particular Ci waveform was not initiated at that time

sample and 1 if the estimate is that the waveform was generated. The state of

the S4 submodel is a window of the most recent true values of these binary

annotations. As with S2. the transition rates of this model are chosen to

match the corresponding transition rates of sequences of binary annotations in

the full model. If the counterpart to (9) is used, the S4 model will in

general be influenced by C . Again as in the case of S2, we have typically

simplified this model so that S4 is autonomous, by averaging out the

C J-dependence using the ergodic distribution for xj(n).

The output of the S4 chain is a sequence of occurrences of the waveform

being modeled. Such outputs occur at all S4 transitions to states with a 1 as

the most recent annotation. The auxiliary observation z4 (n) is again modeled

via a probability distribution conditioned on the most recent S4 transition.

We have determined distributions of this type via simulation.

The structure of the models on which each LE refinement pass is based is

depicted in Figure 9. Again the Viterbi algorithm is used. In general one

can envision making several refinement passes, with the final estimate

consisting of the collection of C -state estimates from the final passes of

the corresponding LE's. The primary purpose of the refinement passes is to

improve the accuracy and consistency of this set of estimates. In particular,

.-
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Figure 9: The structure of a general LE model for a refinement pass.
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if one implemented a single, optimal estimator for the full process, one would

know for certain that all transitions present in the final state estimate

would be consistent (i.e. have nonzero probability in the full process). When

one uses a collection of distributed, simpler LE's. there is no such

guarantee, but the coordination made possbile by refinement passes makes the

occurrence of inconsistent estimates far less likely. In fact, in our studies

consistency has not proven to be a problem.

The complete procedure we have described requires the implementation of a

full set of LE's for the initial pass (based on models as in Figure 8) and

subsequent refinement passes (each based on its own model as in Figure 9). As

in our example in Section 2. it is typically possible to simplify this design

considerably. First of all. as in our example, for each LE it is often not

necessary in the initial pass to include subtractor submodels S3 for waveforms

of low SNR compared to the waveforms generated by the submodel corresponding

to the LE. Also, as we showed, it may not be necessary to include any S4

submodels, since the information provided through S1 and S2 submodels

essentially provides timing information that allows the LE to avoid intervals

in which these interfering signatures may appear. Doerschuk [1985] presents

comparative results with and without S3 and 54 submodels that support these

simplifications.

It is also typically possible to eliminate many of the LE's from each

pass. For example, in the initial pass, one typically would implement LE's

only for submodels generating the higher SNR signatures (such as R-waves), as

the performance of initial pass LE's for other submodels with only low SNR

signatures (or no signatures, as is the case for some rhythm models described

W 9 %- ', ', "_9, ,' ",: ''.,.':'. ';"_,': ".. '. -.-.. ,.-... ." .. '-.',, ':..-;..'. .. ';.,.:.-3.';"..'-,. ' . -:, ' . , . -: ' - : ,- ' -3..:-,-:'-,"-:':...-'.- ;- .I,
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in [Doerschuk 1985, 1986]) will generally be unsatisfactory. Also, in order

to achieve consistency, we do not need to refine all LE's in subsequent

passes. In particular we typically can implement an alternating iterative

structure much as in the example in which we initially estimate the C with

high SNR signatures, then use these estimates to assist in estimating only the

remaining Ci during the next pass; these estimates can then be used in turn

during the following pass in the re-estimation of the C from the initial pass

in order to improve the accuracy and consistency of the C -state estimates.

Note that in addition to eliminating entire passes of LE's, such a structure

reduces the quantity of z and z2 measurements to be processed by the

remaining LE's. In fact, the full set of such information described

previously has some redundancy, reflecting the fact that perhaps not all of

this intermediate processing is needed. The structure described above

simplifies the design by removing these redundant sources of information.

Doerschuk (1985) presents results favorably comparing reduced designs of this

type to estimators incorporating more or all of the LE's at each stage.

4. Conclusions

In this paper we have presented a methodology for the distributed

estimation of interconnected finite-state processes given the observation of

signals containing waveforms initiated by events in the various processes.

Our motivation for examining this class of models is the problem of automated

EOG analysis, but the methods and concepts we have developed are of potential

use in a variety of other applications such as the monitoring of distributed

power networks.

-f
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The approach we have developed highlights the major issues that must be

addressed in designing distributed estimators, namely the aggregated modeling

of the interactions between other portions of the overall process and the

particular subprocess being estimated and the dynamic modeling of the

information provided by other estimators as part of the process of producing

coordinated, consistent estimates of all the subprocesses. We have presented

systematic procedures for constructing these models that can in fact be used

as the basis for a completely automated estimator design procedure [Doerschuk

1985].

In order to illustrate the various elements of our design process we have

presented a case study corresponding to the tracking of a particular cardiac

rhythm using synthetic data. The results presented indicate the potential of

this design method. Two major issues remain to be considered, however, before

a complete ECG rhythm analysis system can be constructed. In particular,

while our distributed design yields estimators with far more modest

computational demands than the corresponding optimal estimator, several steps

can be taken to simplify these computations even more. First, as mentioned

previously, it is possible to construct pipelined versions of our multi-pass

estimators in which all passes are performed at the same time rather than in

sequence. This achieves a several-fold increase in processing throughput.

Also, the nature of the models arising in E(G analysis offer another

possibility for simplification. Specifically, these finite-state processes

typically display multiple time scale behavior (as actual signature-initiating

events occur at a far lower rate than the sampling rate needed to capture

interprocess timing). Consequently, It may be possible to use results on
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hierarchical aggregation of processes with several time scales [Coderch 1983]

to construct more efficient estimators that not only display the spatial

decomposition we have exploited here but also the time scale decomposition of

these processes.

Finally, it is important to realize that the problem of rhythm tracking

addressed here is only a first step in a rhythm diagnosis sytems.

Specifically in such a system one wishes to identify the underlying

distributed process model from a set of such models representing different

cardiac rhythms. As in standard system identification problems, the

computation of the likelihoods for a set of models can be performed

efficiently using the estimates produced by estimators based on each of the

models (e.g. see [Gustafson 1978a, b] for an application of this idea to ECG

rhythm analysis based on R-wave location data only). Doerschuk (1985)

describes an approach to constructing such likelihoods based on the outputs of

a set of estimators of the type described in this paper, but work remains to

be performed to test this method and to develop efficient implementations.
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